新疆长沙脂质体载药

时间:2025年01月21日 来源:

递送核酸的脂质体中的脂质成分脂质体的脂质组成可以影响阳离子脂质的结构性质及其转染效率。由3β[N(N',N'Dimethylaminoethane)carbamoyl]cholesterol,(DC-Chol)和DOPE组成的阳离子脂质体被认为是高效基因传递的代表性脂质体。对于质粒DNA传递,DC-Chol与DOPE的***摩尔比被发现为1:2。质粒DNA的转染效率随着DC-Chol与质粒DNA质量比的增大而降低,比较高转染效率为3:1。**近的一项研究报道了不同的内吞途径对阳离子脂质体组成的可能依赖性。由质粒DNA加DC-Chol或DOPE为基础的阳离子脂质组成的脂质体优先通过内吞作用进入细胞,而包括1,2-二酰-3-三甲基丙烷胺(DOTAP)或DistearoylPhosphatidylcholine(DSPC)为基础的阳离子脂质体的脂质体则被非特异性的液相巨胞饮作用所吸收。主动载药技术已被广泛应用于脂质体产品中,以提高药物的包封率和稳定性。新疆长沙脂质体载药

新疆长沙脂质体载药,脂质体载药

薄膜分散法原理:将磷脂和胆固醇等膜材溶解在有机溶剂中,在容器壁上形成均匀的薄膜,然后加入水相,通过搅拌或震荡使膜材水化,自组装形成脂质体。示例:在“枸杞多糖脂质体制备工艺”中,以大豆卵磷脂和胆固醇为膜材,采用薄膜分散水化法制备枸杞多糖脂质体。通过单因素实验得出药脂比、膜材比、水化温度均对包合率有影响。此方法操作相对简单,适用于多种药物的包封,但包封率可能受到多种因素影响1。二、反相蒸发法原理:将磷脂等膜材溶解在有机溶剂中,加入含有药物的水相,进行超声处理形成油包水型乳剂,然后减压蒸发除去有机溶剂,使磷脂在水相中形成脂质体。示例:“大豆卵磷脂脂质体制备的研究”以大豆油脚为原料制备高纯度大豆卵磷脂,用反相蒸发法制备果酸脂质体。用透射电子显微镜表征了其形态结构,证实其直径在100~200nm之间。该方法适用于包封水溶性药物,可制备较大粒径的脂质体3。三、注入法原理:将磷脂和胆固醇等膜材溶解在有机溶剂中,然后缓慢注入到水相中,在注入过程中,有机溶剂迅速扩散,磷脂等膜材在水相中自组装形成脂质体。举例:该方法操作简便,可用于实验室规模的制备。但需要注意控制注入速度和搅拌条件,以确保脂质体的均匀性和稳定性。胰腺靶向脂质体载药实验采用微流控技术、膜乳化技术等新型制备方法,可以实现脂质体的精确控制和大规模生产。

新疆长沙脂质体载药,脂质体载药

制备方法的创新新型制备方法的出现:为了获得更稳定可控的脂质体,学者们在传统制备方法的基础上改进优化,建立了超临界流体法、冷冻干燥法和双不对称离心法等新型制备方法4。这些方法能够更好地控制脂质体的粒径、包封率等参数,提高药物的稳定性和生物利用度。优化传统脂质体:为实现增强疗效的同时降低毒性的目的,学者们对传统脂质体进行优化,开发出环境敏感型脂质体、长循环脂质体和多功能脂质体等改良脂质体4。例如,长循环脂质体通过调整脂质组成、大小和电荷等参数,延长了脂质体在体内的循环时间,提高了药物的靶向性和疗效。

microRNA脂质体

microRNA是真核细胞中发现的短(约22mer)非编码RNA,通过结合互补的mRNA序列发挥生物调节剂的作用。miRNA以初级miRNA的形式从其编码的核基因转录,其长度为数百个核苷酸。RNaseIII酶,Drosha,将初级miRNA加工成pre-miRNA(长度为70个核苷酸),携带一个特征的发夹环。然后pre-miRNA移动到细胞质中,在那里RNaseIII酶Dicer产生成熟的miRNA和乘客链。***,成熟的miRNA被整合到RNAi诱导的沉默复合体中,以降解它们的靶mRNA。由DOTMA、胆固醇和vitaminETPGS1k琥珀酸盐组成的阳离子脂质体被证明可以有效递送pre-miRNA-133b,导致A549非小肺*细胞中成熟miRNA-133b的表达比对照组细胞增加2.3倍,Mcl-1蛋白的表达减少1.8倍。经尾静脉注射含有pre-miRNA-133b的阳离子脂质体(1.5mg/kg)的ICR小鼠肺组织中成熟miRNA-133b的表达比接受含有紊乱的pre-mirna的阳离子脂质体的小鼠高52倍。 纳米技术增强药物稳定性和生物利用度。

新疆长沙脂质体载药,脂质体载药

脂质浓度初始脂质浓度也是一个重要的技术参数。在利用微流体装置制备不同紫杉醇(PTX)负载的脂质体的研究中,通过改变初始脂质浓度和流量比(FRR)可以调整脂质体的尺寸和药物负载量,并且还能控制脂质体的单多层结构27。在制备聚乙二醇化脂质体的研究中,脂质成分和组成、初始脂质浓度和含水介质等配制参数以及总流速(TFR)和乙醇水含量流量比(FRR)等处理参数共同影响脂质体的性能21。四、药物浓度药物浓度也会影响脂质体的制备。在制备甲氨蝶呤脂质体(MTX-L)和甲氨蝶呤聚乙二醇化脂质体(MTX-PLL)的研究中,总流速(TFR)、总脂质浓度和MTX浓度等参数可以优化脂质体的理化特性2325。综上所述,微流体法制备脂质体的关键技术参数包括流量比(FRR)、总流速(TFR)、脂质浓度和药物浓度等。这些参数可以通过调整来控制脂质体的尺寸、结构、药物负载量和释放特性等性能,为脂质体的制备提供了精确的控制手段。脂质体作为一种重要的纳米载药系统,其结构特点对不同类型药物的载药效果有着多方面的具体影响。青海重庆脂质体载药

脂质体载药技术在未来的发展方向包括提高药物包封率和稳定性、增强靶向性、拓展临床应用领域等方面。新疆长沙脂质体载药

siRNA脂质体

RNA干扰(RNAi)途径允许siRNA和miRNAs负向调节蛋白表达。siRNA是21~23对核苷酸组成的双链RNA,可诱导同源靶mRNA沉默。为了发挥作用,双链siRNA分裂成两个单链RNA:乘客链和引导链。乘客链被argonaute-2蛋白降解,而引导链则被纳入RNAi诱导的沉默复合体中,该复合体结合与引导链互补的mRNA并将其切割。siRNA似乎具有***多种疾病的巨大潜力,因为它们可以很容易地下调各种靶mRNA,而不考虑它们的位置(即在细胞核或细胞质中),并且它们的特异性结合表明它们比传统化学药物诱导的副作用更少。作为一种新型的基于核酸的***策略,siRNA***与传统的化学药物相比具有许多优势。然而,为了促进基于siRNA的***方法的发展,必须克服一些挑战,包括需要识别适当的靶基因和开发优化的递送系统。许多研究人员试图利用阳离子脂质体提高siRNA的细胞递送和基因沉默效率。例如,由DC-6-14、DOPE和胆固醇组成的阳离子脂质体被用于递送萤火虫荧光素酶特异性的siRNA。当阳离子脂质体与siRNA持续剧烈搅拌混合时,转染效率提高,说明将siRNA加载到阳离子脂质体上的方法可以调节转染效率。siRNA脂丛的***应用因靶蛋白而异。 新疆长沙脂质体载药

信息来源于互联网 本站不为信息真实性负责